Triennio-Polinomio

Esercizi commentate dei Giochi di Archimede del 27-11-2014

Triennio-Polinomio

Messaggioda Gizeta » 27/11/2014, 19:06

Qualcuno ha chiesto come risolvere questo.

"Il numero intero positivo [tex]n[/tex] è tale che il polinomio

[tex]1-2x+3x^2-4x^3+5x^4-...-2014x^{2013}+nx^{2014}[/tex]

abbia almeno una soluzione intera. Quanto vale [tex]n[/tex]?"

Sia [tex]p[/tex] soluzione intera del polinomio, allora

[tex]1-2p+3p^2-4p^3+5p^4-...-2014p^{2013}+np^{2014}=0[/tex]

[tex]p(-2+3p^1-4p^2+5p^3-...-2014p^{2012}+np^{2013})=-1 \Rightarrow p \mid -1[/tex], ossia [tex]p=1[/tex] o [tex]p=-1[/tex].

Se [tex]p=-1[/tex] abbiamo [tex]\displaystyle n=-\frac{2014\cdot 2015}{2}[/tex], che non va bene in quanto cerchiamo [tex]n >0[/tex].

Se [tex]p=1[/tex], ci rimane [tex]1-2+3-4+...-2014+n=0[/tex], ossia [tex](1-2)+(3-4)+...+(2013-2014)+n=0 \rightarrow n=1007[/tex], non presente fra le soluzioni.

La risposta dovrebbe essere nessuna delle precedenti.
Gizeta
 
Messaggi: 826
Iscritto il: 27/11/2013, 17:16

Re: Triennio-Polinomio

Messaggioda marcomarco » 27/11/2014, 22:23

Hmmm... ma come fate ad arrivare a soluzioni del genere? :?: :?: :?: io non ci sarei arrivato
marcomarco
 
Messaggi: 63
Iscritto il: 28/06/2014, 11:03

Re: Triennio-Polinomio

Messaggioda afullo » 27/11/2014, 22:25

Forse per la prima parte è sufficiente osservare che le soluzioni razionali devono essere tali per cui il numeratore divide [tex]1[/tex] e il denominatore divide [tex]n[/tex], ma per essere intere possono stare soltanto nell'insieme [tex]\{-1,1\}[/tex].
afullo
 
Messaggi: 1620
Iscritto il: 13/03/2013, 22:06

Re: Triennio-Polinomio

Messaggioda Giovanni98 » 28/11/2014, 9:32

Ragazzi forse sbaglio, anzi probabilmente, ma ho pensato in questo modo

Se il polinomio fosse stato :

1-2x+3x^2-4x^3+nx^4 = P (x)

se io pongo x = 1 che è una soluzione intera mi viene che

p(1) = n=-1+2-3+4=2

Pertanto sostituendo 2 ad 0 il polinomio si annulla per x = 1.

Premetto che è un mio pensiero e vorrei sapere dove sbaglio.
Ciaooooooo
Avatar utente
Giovanni98
 
Messaggi: 1255
Iscritto il: 27/11/2014, 14:30

Re: Triennio-Polinomio

Messaggioda Giovanni98 » 28/11/2014, 9:35

Scusate, ci sono arrivato ora che n deve essere 1007, sorry xD
Avatar utente
Giovanni98
 
Messaggi: 1255
Iscritto il: 27/11/2014, 14:30


Torna a Giochi di Archimede 2014 - 2015

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite