Trapezio simpatico

Tutti i problemi che presentino una figura (calcolo delle aree e dei perimetri, similitudini, allineamenti, concorrenze, ecc...)

Trapezio simpatico

Messaggioda Lorenzoschiav » 09/09/2018, 19:15

salve
ho scoperto che dato un trapezio qualsiasi, il il punto medio del segmento che unisce i punti medi dei lati obliqui è tale che qualsiasi retta passante per esso divide il trapezio in due trapezio equivalenti.
qualcuno mi potrebbe mostrare una dimostrazione?
Lorenzoschiav
 
Messaggi: 5
Iscritto il: 23/11/2016, 16:23

Re: Trapezio simpatico

Messaggioda Gizeta » 11/09/2018, 10:32

Senza perdita di generalità possiamo considerare il trapezio ([tex]ABCD[/tex] in senso orario a partire dal vertice in alto a sinistra) disposto di modo che la base maggiore sia quella inferiore; banalmente, se [tex]M_1[/tex] e [tex]M_2[/tex] sono rispettivamente i punti medi di base minore e base maggiore, si ha che [tex]AM_1M_2D[/tex] e [tex]M_1BCM_2[/tex] sono equivalenti (le altezze e le basi sono congruenti).

Consideriamo ora una qualsiasi retta che passi per il punto medio del testo (diciamo [tex]M_3[/tex]) e che intersechi base maggiore e base minore in, rispettivamente, [tex]T_1[/tex] e [tex]T_2[/tex], allora è facile dimostrare [tex]\triangle{M_1M_3T_1} \cong \triangle{M_2M_3T_2}[/tex] (infatti i due triangoli sono banalmente simili -perché le rispettive basi sono parallele- e [tex]\overline{M_1M_3} \cong \overline{M_3M_2}[/tex] per Talete, quindi essi sono anche congruenti).

Segue la tesi del problema.
Gizeta
 
Messaggi: 821
Iscritto il: 27/11/2013, 17:16


Torna a Geometria

Chi c’è in linea

Visitano il forum: Nessuno e 0 ospiti