Problema 8 Paolini

Calcolo combinatorio (disposizioni, permutazioni e combinazioni) e calcolo delle probabilità.

Problema 8 Paolini

Messaggioda FTMaker » 16/02/2018, 21:54

Ciao, non mi trovo con la soluzione data dal Paolini al quesito:
"Quanti sono i numeri di quattro cifre che finiscono per 4 e sono multipli di tre?"

La mia soluzione è questa:

Perchè sia multiplo di 3, la somma delle 4 cifre deve essere congrua a 0 (mod 3). Essendo 4 congruo a 1 (mod 3), la somma delle tre cifre rimanenti deve essere congrua a 2 (mod 3).
Posso avere quindi (a,b,c) congrui a (0,1,1), (1,0,1), (1,1,0), (2,0,0), (0,2,0), (0,0,2), (2,1,2), (2,2,1), (1,2,2); per ogni terna ho 3 possibilità per a, 3 per b e 3 per c.
Totale: 9 terne * 3 * 3 * 3 = 3^5 = 729.

Il libro propone 300 come soluzione, perchè la mia è diversa? :roll:
FTMaker
 
Messaggi: 120
Iscritto il: 27/11/2014, 15:40

Re: Problema 8 Paolini

Messaggioda 0004POWER » 16/02/2018, 22:06

Io mi ritrovo con la soluzione del libro.
Ragionando da 1000 a 9999 ci sono 9000 numeri, e di questi 900 terminano per 4; e logicamente solo 1/3 dei numeri che terminano per 4 sarà effettivamente multiplo di 3. 900×1/3=300
0004POWER
 
Messaggi: 105
Iscritto il: 28/04/2017, 19:19

Re: Problema 8 Paolini

Messaggioda kakaroth » 17/02/2018, 7:32

L'idea dovrebbe essere giusta, ma 3^5 = 243, quindi stai contando meno terne perchè non stai considerando lo 0 per le cifre in mezzo.
kakaroth
 
Messaggi: 9
Iscritto il: 04/01/2018, 18:56

Re: Problema 8 Paolini

Messaggioda FTMaker » 17/02/2018, 10:22

Illuminante, grazie :D

Quindi sono 9 terne da calcolare in questo modo:
4 terne*3*3*3 = 108 +
4 terne*3*3*4 = 144 +
1 terna *3*4*4 = 48

= 300.
FTMaker
 
Messaggi: 120
Iscritto il: 27/11/2014, 15:40


Torna a Combinatoria e Probabilità

Chi c’è in linea

Visitano il forum: Nessuno e 0 ospiti