Polinomi

Tutto ciò che dovete sapere per arrivare preparati alle competizioni matematiche.

Polinomi

Messaggioda francescoid 91 » 14/09/2019, 6:11

Ciao a tutti, mi sto esercitando per le Olimpiadi e ho un dubbio per quanto riguarda, dati due polinomi [tex]p(x)[/tex] e [tex]q(x)[/tex], la scrittura [tex]p(q(x))[/tex] .

Detti [tex]m[/tex] ed [tex]n[/tex] il loro grado, rispettivamente, come mai il grado di [tex]p(q(x))[/tex] è [tex]mn[/tex] ? Avrete capito in molti che si tratta di un quesito di febbraio, vero? E' un passaggio che non riesco a capire :(
francescoid 91
 
Messaggi: 15
Iscritto il: 23/11/2018, 23:26

Re: Polinomi

Messaggioda afullo » 14/09/2019, 15:31

Siano [tex]p(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0[/tex] e [tex]q(x) = b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0[/tex], con [tex]a_m \neq 0[/tex] e [tex]b_n \neq 0[/tex]. Allora

[tex]p(q(x)) = p(b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0) = a_m (b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0)^m + a_{m-1} (b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0)^{m-1} + \ldots[/tex]

dove il termine di grado più alto è [tex]a_m b_n^m x^{mn}[/tex].
afullo
 
Messaggi: 1650
Iscritto il: 13/03/2013, 22:06


Torna a Teoria

Chi c’è in linea

Visitano il forum: Nessuno e 0 ospiti