Cifre delle unità

Numeri interi, divisibilità, primalità, ed equazioni a valori interi.

Cifre delle unità

Messaggioda Drago » 04/04/2013, 14:54

Sia $u(n)$ la funzione che ad $n$ intero positivo associa la sua cifra delle unità.
Per quali $n$ vale $u(n)=u\left(n^{2013}\right)$? E se sostituissimo $2012$ a $2013$?
Avatar utente
Drago
 
Messaggi: 1056
Iscritto il: 14/03/2013, 15:51

Re: Cifre delle unità

Messaggioda Lasker » 04/04/2013, 17:19

Credo che per la prima domanda ([tex]2013[/tex]) la risposta sia:
[tex]n=0\pmod{10}[/tex]
[tex]n=1\pmod{10}[/tex]
[tex]n=4\pmod{10}[/tex]
[tex]n=5\pmod{10}[/tex]
[tex]n=6\pmod{10}[/tex]
[tex]n=9\pmod{10}[/tex]
E per la seconda ([tex]2012[/tex]) solo
[tex]n=0\pmod{10}[/tex]
[tex]n=1\pmod{10}[/tex]
[tex]n=5\pmod{10}[/tex]
[tex]n=6\pmod{10}[/tex]
Cur enim scribere tre numeri quando se ne abbisogna di due? Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani.

PRIMA FILA TUTTI SBIRRI!

#FREELEPORI
Lasker
 
Messaggi: 834
Iscritto il: 17/03/2013, 16:00

Re: Cifre delle unità

Messaggioda Drago » 04/04/2013, 17:28

La seconda è giusta, la prima no ;)
Metti anche il/i procedimento/i, è la cosa più importante! :)
Avatar utente
Drago
 
Messaggi: 1056
Iscritto il: 14/03/2013, 15:51

Re: Cifre delle unità

Messaggioda Lasker » 04/04/2013, 17:45

Ahh, ho lavorato modulo 5 invece che 4... :D

se il numero finisce con 0 il periodo è 1 , ogni sua potenza finisce con 0
se il numero finisce con 1, il periodo è 1, ogni sua potenza finisce con 1
se il numero finisce con 2 il periodo è 4, ogni potenza con esponente [tex]k=1\pmod{4}[/tex] finisce con 2 (2,4,8,6,2,...)
se il numero finisce con 3 il periodo è 4, ogni potenza con esponente [tex]k=1\pmod{4}[/tex] finisce con 3 (3,9,7,1,3,...)
se il numero finisce con 4 il periodo è 2, ogni potenza con esponente [tex]k=1\pmod{2}[/tex] finisce con 4 (4,6,4,6,4,..)
se il numero finisce con 5 il periodo è 1 , ogni sua potenza finisce con 5
se il numero finisce con 6 il periodo è 1 , ogni sua potenza finisce con 6
se il numero finisce con 7 il periodo è 4, ogni potenza con esponente [tex]k=1\pmod{4}[/tex] finisce con 7 (7,9,3,1,7,...)
se il numero finisce con 8 il periodo è 4, ogni potenza con esponente [tex]k=1\pmod{4}[/tex] finisce con 8 (8,4,2,6,8,...)
se il numero finisce con 9 il periodo è 2, ogni potenza con esponente [tex]k=1\pmod{2}[/tex] finisce con 9 (9,1,9,1,9,..)

essendo [tex]2013=1\pmod{2;4}[/tex], tutti i numeri godono della proprietà :roll:
Cur enim scribere tre numeri quando se ne abbisogna di due? Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani.

PRIMA FILA TUTTI SBIRRI!

#FREELEPORI
Lasker
 
Messaggi: 834
Iscritto il: 17/03/2013, 16:00

Re: Cifre delle unità

Messaggioda Livex » 04/04/2013, 17:56

scrivo anche la mia

innanzitutto riscriviamo sotto congruenza..
[tex]\displaystyle n\equiv n^{2013}\pmod{10}[/tex]
qui scomodo inutilmente l'ordine moltiplicatico
abbiamo che affinche valga la congruenza di prima ORDn(10) deve dividere [tex]\displaystyle 2013-1=2012[/tex] perche la congruenza di prima puo essere riscritta come [tex]\displaystyle n\equiv n^{k*ORDn(10)+1}[/tex] dove k è appunto un divisore di 2012(spero di non aver scritto una marea di fesserie..)
siccome possiamo nelle congruenze ridurre la base,avremo 10 possibili casi da studiare
ovviamente vale per [tex]\displaystyle n\equiv0\pmod{10}[/tex] perche ORD0(10)=1 che divide 2012 (vale per 0,1,6,5)
poi abbiamo [tex]\displaystyle n\equiv2\pmod{10}[/tex] e vale perche ORD2(10)=4 che divide 2012 (vale per 2,3,7,8)
inoltre vale per [tex]\displaystyle n\equiv4\pmod{10}[/tex] sempre perche ORD4(10)=2 che divide 2012(vale per 4,9)
ammeno che non mi sia perso qualche numero o che abbia sbagliato la parte delirante in cui spiegavo l'ordine moltiplicatico,penso sia giusto

per il secondo punto
[tex]\displaystyle n\equiv n^{2012}[/tex]
per gli stessi motivi scritti sopra ORDn(10) deve dividere [tex]\displaystyle 2012-1=2011[/tex] che è primo quindi l'ORDn deve essere 1
quindi vale per tutti gli n congrui a [tex]\displaystyle 0,1,6,5[/tex] modulo 10
Livex
 
Messaggi: 994
Iscritto il: 15/03/2013, 15:33


Torna a Teoria dei Numeri

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti