carattere di una serie

Oltre la matematica elementare: teoria, esercizi, e riflessioni sulle varie branche della matematica che si fanno all'università.

carattere di una serie

Messaggioda renat_ » 28/10/2015, 18:42

questo è un esercizio del mio libro di analisi, qualcuno mi potrebbe spiegare come posso risolverlo? grazie

[tex]\sum_{k=0}^{∞}{ \frac{k+1}{2k+1}}^\sqrt{k}[/tex]
renat_
 
Messaggi: 99
Iscritto il: 15/12/2014, 18:05

Re: carattere di una serie

Messaggioda lucaboss98 » 28/10/2015, 18:53

renat_ ha scritto:questo è un esercizio del mio libro di analisi, qualcuno mi potrebbe spiegare come posso risolverlo? grazie

[tex]\sum_{k=0}^{∞}{ \frac{k+1}{2k+1}}^\sqrt{k}[/tex]

Esattamente cosa è elevato a $\sqrt{k}$?
lucaboss98
 
Messaggi: 981
Iscritto il: 27/11/2013, 20:03

Re: carattere di una serie

Messaggioda renat_ » 28/10/2015, 18:56

tutto il termine generale
renat_
 
Messaggi: 99
Iscritto il: 15/12/2014, 18:05

Re: carattere di una serie

Messaggioda afullo » 29/10/2015, 18:43

Prova a considerare che, per k >= 1, quella frazione è maggiorabile da 2/3.
afullo
 
Messaggi: 1388
Iscritto il: 13/03/2013, 22:06

Re: carattere di una serie

Messaggioda renat_ » 30/10/2015, 16:32

ci avevo pensato ma 2/3 alla radice di k mi viene divergente (se non ho sbagliato qualcosa io), ed avendo maggiorato non posso concludere niente
renat_
 
Messaggi: 99
Iscritto il: 15/12/2014, 18:05

Re: carattere di una serie

Messaggioda afullo » 31/10/2015, 0:47

Per k=0 fa 1, poco da dire.
Per k=1,2,3 prendi come maggiorazione 2/3 (tre volte).
Per k da 4 a 8 prendi come maggiorazione (2/3)^2 (cinque volte).
Per k da 9 a 15 prendi come maggiorazione (2/3)^3 (sette volte)
e così via.

Riarrangiando opportunamente hai: il valore 1, poi tre volte tutta la serie geometrica a partire da 2/3, che fa 3*2=6; due volte a partire da (2/3)^2, che fa 2*2*(2/3); due volte a partire da (2/3)^3, che fa 2*2*(2/3)^2, ..., insomma ti viene 7+4*(2/3+(2/3)^2+(2/3)^3+...) = 7+4*2=15.

D'altro canto: http://www.wolframalpha.com/input/?i=\sum_{k%3D0}^{oo}+%28%28k%2B1%29%2F%282k%2B1%29%29^%28sqrt%28k%29%29
afullo
 
Messaggi: 1388
Iscritto il: 13/03/2013, 22:06

Re: carattere di una serie

Messaggioda renat_ » 31/10/2015, 18:01

grazie mille! avevo trovato un altro metodo (con un aiutino del prof) per dimostrare che la serie è convergente, ma questo mi sembra più bello e anche più preciso visto che riesci a calcolare il valore della serie.
il mio metodo consiste nel dimostrare che la serie è asintotica rispetto a [tex]\frac{1}{2^\sqrt{k}}[/tex] per poi dimostrare che quest'ultima ha il termine generale più piccolo di [tex]\frac{1}{k^2}[/tex] definitivamente per [tex]k->∞[/tex]. Ma [tex]\frac{1}{k^2}[/tex] è una serie notoriamente convergente e quindi è convergente anche la serie iniziale.
Un'altra domanda: secondo voi la difficoltà di questo esercizio non è un po' troppo elevata per un esercizio di fine capitolo di un libro di Analisi per gli Ingegneri?
renat_
 
Messaggi: 99
Iscritto il: 15/12/2014, 18:05

Re: carattere di una serie

Messaggioda enigma » 31/10/2015, 22:25

renat_ ha scritto:Un'altra domanda: secondo voi la difficoltà di questo esercizio non è un po' troppo elevata per un esercizio di fine capitolo di un libro di Analisi per gli Ingegneri?

No.
Avatar utente
enigma
 
Messaggi: 124
Iscritto il: 19/03/2013, 20:11

Re: carattere di una serie

Messaggioda mr96 » 01/11/2015, 3:17

enigma ha scritto:
renat_ ha scritto:Un'altra domanda: secondo voi la difficoltà di questo esercizio non è un po' troppo elevata per un esercizio di fine capitolo di un libro di Analisi per gli Ingegneri?

No.

Che cattiveria.
mr96
 
Messaggi: 1455
Iscritto il: 11/02/2014, 20:37

Re: carattere di una serie

Messaggioda afullo » 01/11/2015, 14:54

Considerato che ci sono ingegneri che arrivano alla magistrale a dimenticarsi il significato di derivata, ricordandosi solo come si usa, forse un rinforzo di matematica all'inizio non fa male...
afullo
 
Messaggi: 1388
Iscritto il: 13/03/2013, 22:06


Torna a Matematica Universitaria

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite